In fact, either a direct inhibition of VEGFR2 tyrosine kinase activity and/or a shRNA-mediated knockdown of VEGFR2 or NRP1 dramatically decrease GSC cell viability [144]. ATG and exosome release are reciprocally regulated. In detail, a failure in ATG enhances exosomal release. Therefore, strategies aimed at targeting on mTOR-dependent extracellular vesicles could be a promising approach for Ticagrelor (AZD6140) GBM prevention and treatment. Abstract Recently, exosomal release has been related to the acquisition of a malignant phenotype in glioblastoma cancer stem cells (GSCs). Remarkably, intriguing reports demonstrate that GSC-derived extracellular vesicles (EVs) contribute to glioblastoma multiforme (GBM) tumorigenesis via multiple pathways by regulating tumor growth, infiltration, and immune invasion. In fact, GSCs release tumor-promoting macrovesicles that can disseminate as paracrine factors to induce phenotypic alterations in glioma-associated parenchymal cells. In this way, GBM can actively recruit different stromal cells, which, in turn, may participate in tumor microenvironment (TME) remodeling Ticagrelor (AZD6140) and, thus, alter tumor progression. Vice versa, parenchymal cells can transfer their protein and genetic contents to GSCs by EVs; thus, promoting GSCs tumorigenicity. Moreover, GBM was shown to hijack EV-mediated cell-to-cell communication for self-maintenance. The present review examines the role of the mammalian Target of Rapamycin (mTOR) pathway in altering EVs/exosome-based cell-to-cell communication, thus modulating GBM infiltration and volume growth. In fact, exosomes have been implicated in GSC niche maintenance trough the modulation of GSCs stem cell-like properties, thus, affecting GBM infiltration and relapse. The present manuscript will focus on how EVs, and mostly exosomes, may act on GSCs and neighbor non tumorigenic stromal cells to modify their expression and translational profile, while making the TME surrounding the GSC niche more favorable for GBM growth and infiltration. Novel insights into the mTOR-dependent mechanisms regulating EV-mediated intercellular communication within GBM TME hold promising directions for future therapeutic applications. strong class=”kwd-title” Keywords: glioma cancer stem cells, extracellular vesicles, exosomes, cell-to-cell communication, tumor microenvironment, GSC niche 1. Introduction Gliomas are the most frequent intracranial tumors in adults [1]. Within this heterogeneous group of neoplasms, glioblastoma multiforme (GBM) represents the highest and most severe prognostic grade, namely grade IV glioma, according to the World Health Organization (WHO) classification system [2,3]. With a median overall survival of 14 months after diagnosis, GBM remains the most aggressive and lethal among all primary brain tumors [4]. In particular, GBM is featured by a marked intra-tumoral cellular heterogeneity, high proliferative rate, and extensive invasiveness within the surrounding healthy brain parenchyma [5,6,7,8]. Recent findings demonstrate that GBM malignant behavior is associated with the presence of a small subpopulation of cells referred to as glioblastoma cancer stem cells or glioma stem cells (GSCs) [9,10,11]. Remarkably, these cells display biological properties of normal neural stem cells, such as increased growth rate, enhanced self-renewal, and pluripotency [12,13]. Thus, GSCs represent the amplification of neural stem cell (NSCs), Ticagrelor (AZD6140) which reside within perivascular niches of the adult human brain [14,15]. The uncontrolled proliferation within these restricted neurogenic areas results in the establishment of a reservoir of tumorigenic cells forming the tumor bulk [16,17,18,19]. As occurring in many solid tumors, even GBM features a hierarchical organization, mirroring a normal stem cell system. In particular, a small subset of pluripotent and self-renewing GSCs stands at the apex of this hierarchy. The asymmetrical division of GSCs replenishes the pool of cancer stem-like cells, while giving rise to a population of phenotypically heterogeneous tumor cells. The more differentiated progeny cells, with low EM9 or no-tumorigenic potential, are restricted at the bottom. Although numerous studies have revealed that GSCs originate from NSCs, emerging results suggest that GSCs enrichment may occur from a de-differentiation of normal brain cells [20,21]. Ticagrelor (AZD6140) For instance, recent experiments showed that Ticagrelor (AZD6140) epigenetic modifications can revert non-GSCs into GSCs [22]. Therefore, the issue of GBM cell(s) of origin is still on debate, providing a major complexity in understanding GBM neurobiology. At the same time, this hurdles for identifying a therapeutic strategy aimed at eradicating GSCs, which in turn contributes to the dismal prognosis of GBM patients. High rate of tumor recurrence is a prominent feature of high-grade gliomas, and especially GBM. Unfortunately, GBM frequently recurs nearby surgical resection margin with lower response rate to conventional treatments [23]. Multiple studies have demonstrated that GSCs harbor high tumor initiating and clonogenic potential; thus, emerging as the driving force of GBM therapeutic resistance and relapse [24,25,26,27]. In particular, the remaining therapeutic-resistant GSCs can provide a reservoir of cells from which recurrent GBM arises. In fact, after debulking, these cells can migrate within the resection cavity, and initiate and recapitulate the whole tumor [28]. In addition, remaining GSCs show enhanced resistance to current treatments [29]. To date, management protocols for recurrent GBM (rGBM) patients are not well.